Hamburg Lectures on Spectral Networks Lecture 2

I didn't get to give the lecture...

Lecture 2: Defects, Gluing, and BRS States

1. An Important Special Case: Linear Conformal Quivers
2. General Description of Punctures
3. Gaistto Gluing
4. Other Defect "operators"
5. BPS States: General Remarks
6. A Zoo of Class S BPS States
7. Semiclassical Description of td BPS States ε_{1} Hyperkäher Geometry
8. An Important Special Case

An important special case of the general discussion from the previous lecture is M - Theory on

$$
\begin{aligned}
& M^{1,3} \times C \times \mathbb{T} \times \mathbb{R}^{3} \\
& x^{0,1,2,3} \quad x^{6}+i x^{10} \quad x^{4}+i x^{5} \quad x^{7,8,9} \\
& x^{10} \sim x^{10}+2 \pi \\
& d s^{2}=d x^{\mu} d x_{\mu}+\left[\left(d x^{6}\right)^{2}+R^{2}\left(d x^{10}\right)^{2}\right]+\sum\left(d x^{i}\right)^{2} \\
& \overbrace{x^{012}}^{\uparrow^{x^{4+i 5}}} \frac{x^{6}}{R}+i x^{10}:=S \\
& x^{7,8,9}=0
\end{aligned}
$$

We fallow an important paper of Witter: hep-th/9703166 and consider a system of $K 15$ banes with $W_{6}=M^{1 / 3} \times C$ at $x^{4,5,7,8,9}=0$ together with $(n+1)$ transverse singly-arapped M5's.

$$
k M 5 \text { 's }
$$

M5 wraps a holomorphic curve:

$$
\begin{aligned}
& v^{k} \prod_{\alpha=0}^{n}\left(t-t_{\alpha}\right) \\
& t= e^{-\left(x^{6}+i x^{10}\right)} \in \mathbb{C}^{*} \quad v=\left(x^{4}+i x^{5}\right) / R
\end{aligned}
$$

LEET is a $(2,0)$ Terry on

$$
M^{1,3} \times\left(T^{*} C\right)_{\text {zerosection }}
$$

But with codimension 2 defects at $t=t_{\alpha}$.
What do these do in the 4D field Theory and in the Hitchin system?

To answer this question we reduce on the M-Theory circle and get a configuration of brames

At long distances $\gg\left(x_{\alpha}^{6}-x_{\alpha-1}^{6}\right)$ The 4D effective gauge the orly is a Quiver gauge theory:

- In each interval $\left[x_{\alpha,}^{6}, x_{\alpha+1}^{6}\right]$ the D4's give a $U(K)$ gauge the ry: See below.
- There are bifundamental hypermultiplets across each NS5
- K fundamentals from strings@ end

Standard notation:

The Coulomb brach vacua of this theory is defined by deformations of the above singular curve that do not change asymptotics @ ∞

$$
\begin{aligned}
\sum & =\{(t, v) \mid F(t, v)=0\} \\
& \subset C_{6+i / 0} \times \mathbb{C}_{4+i 5} \cong T^{*} C \\
F(t, v) & =v^{k} \prod_{\alpha=0}^{n}\left(t-t_{\alpha}\right)+\sum_{i=1}^{k} P_{i}(t) v^{k-i}
\end{aligned}
$$

k roots in $v=k$ sheets of The $U(k)_{2}$ garage theory as the D4's
separate onto their Coulomb branches For generic p_{i} just one root gees to ∞ at $t \rightarrow t_{\alpha}$

$$
V_{x}(t) \sim \frac{1}{t-t_{\alpha}}\left(\frac{-P_{1}\left(t_{\alpha}\right)}{\prod_{\beta \neq \alpha}\left(t_{\alpha}-t_{\beta}\right)}\right)+\cdots
$$

Also for $x^{6} \longrightarrow \pm \infty \Longleftrightarrow{ }^{0}$ we should just have k roots \Rightarrow $\operatorname{deg}\left(p_{i}\right) \leqslant n+1 \Longrightarrow$ can also write

$$
F(t, v)=\sum_{\alpha=0}^{n+1} t^{n+1-\alpha} q_{\alpha}(v) \quad \operatorname{deg}\left(q_{\alpha}\right)=k
$$

Roots of $q_{0}(v)$: Roots in v for $t \rightarrow \infty$ Have interpretation of fondamental string masses,

Costs enemy for these Strings

Let us understand the origin and nature of the $U(k)$ gauge theory factors better.

Focus on one interval:

In the LEET The theory on the D4's is $3+1$ dimensional if we look at long, scales \gg $x_{\alpha}^{6}-x_{\alpha-1}^{6}$. The DD strings inside each interval gives a separate $U(k)$ SYM. The Coulomb branch is obtained by the supersymmetric brave configuration:

Now naive reduction of the action for DY on $W_{4}=M^{1 / 3} \times\left[x_{\alpha-1}^{6}, x_{\alpha}^{6}\right]$ gives

*) $\frac{1}{g_{\pi \mu}^{2}}=\frac{x_{\alpha}^{6}-x_{\alpha-1}^{6}}{g_{\delta t r}} \sim \operatorname{Re}\left(S_{\alpha}-S_{\alpha-1}\right)$
(Recall $\left.g_{\text {str }} l_{s t r}=R\right)$

$$
-i \pi \tau_{\alpha}=-i \pi\left(\frac{\theta_{\alpha}}{2 \pi}+\frac{4 \pi i}{g_{\alpha}^{2}}\right)=S_{\alpha}-S_{\alpha-1}
$$

Actually this is slightly crude.
The picture

is only accurate at large scale. In fact the endpoint of the D4 defines a source for the Theory on the NS5 and

$$
\nabla^{2} x^{6}=\delta(\cdots)
$$

So $\quad x^{6}=\sum_{i=1}^{k} \log \left(v-v_{i}^{(\alpha)}\right)$

Put together with $\frac{1}{g_{\pi \pi}^{2}} \sim \frac{x_{\alpha}^{6}-x_{\alpha-1}^{6}}{g_{\alpha-}}$
This is a geometrization of the β-function equation. Taking into account the D4's from both sides gives:

$$
x^{6}=\sum_{i=1}^{k} \log \left(v-v_{i}^{\alpha}\right)-\sum_{i=1}^{k} \log \left(v-v_{i}^{\alpha-1}\right)
$$

as $v \longrightarrow \infty$ The coupling approaches a finite limit and that is the way we should interpret equation *

In any case we should interpret the weak coupling limit $\left|t_{\alpha} / t_{\alpha-1}\right| \rightarrow 0$

This is a particular region of the Complex structure moduli spare of

$$
\left(\mathbb{C} \mathbb{P}^{\prime},\{0, \infty\}\right) \backslash\left\{t_{1}, \ldots, t_{n}\right\}
$$

Thus a weak coupling limit is associated with a particular degeneration of complex structure of

There are many ways to arrange the points $t_{0,}, \cdots, t_{m}:$ These will corresponal to S-dual pictures of the same $Q F=T$.

Computing scalars $K E \Rightarrow \lambda=v \frac{d t}{t}$
Now from the nature of the roots of $F(t, v)$ we can deduce the behavior of the Highs field:

$$
\begin{aligned}
& \varphi(t) \sim \frac{d t}{t-t_{\alpha}}\left(\begin{array}{llll}
m_{\alpha} & & & \\
& 0 & & \\
& & \ddots & \\
& & 0
\end{array}\right) \quad t \rightarrow t_{\alpha}
\end{aligned}
$$

We can do a similar exercise with a 4 D quiver gauge theory:

β-function at $\alpha^{\text {th }}$ note is a positive multiple of

$$
-2 k_{\alpha}+k_{\alpha-1}+k_{\alpha+1}+d_{\alpha} \leqslant 0 \leqslant \begin{aligned}
& \uparrow \\
& \text { Get more general punctures }
\end{aligned} \quad \begin{aligned}
& \text { an interesting } \\
& \text { point here } \\
& \text { that we must } \\
& \text { study halo mophic } \\
& \text { Cunts in } \pi N \\
& \text { space }
\end{aligned}
$$

$$
\begin{aligned}
& \varphi \sim \frac{r}{t-t_{\alpha}} d t+\cdots . \\
& Z(r)=\prod_{\beta=1}^{k} U(\beta)^{\ell \beta} \quad \text { Partition of } k
\end{aligned}
$$

A good way to enc de this data is in terms of

$$
\rho: s l(2) \longrightarrow s l(k)
$$

because that generalizes.
We also get irregular singular points (Typical for asymptotically free theories.)
2. General Description of Punctures

More generally, it is thought that there are $1 / 2$ BPS codimension two defects

in the $(2,0)$ theory.
So they are 4 -divil objects that modify correlation functions like boundary conditions. They are only characterized rather indineately:

Recall that $S(l y) / S_{R_{1}}^{1} \times S_{R_{2}}^{1}$ is $N=4 \quad d=4$ SYM

So we consider $S[\lg]$ on

$$
M^{1,2} \times S_{R_{1}}^{1} \times 0_{\delta_{R_{2}}^{\prime}}
$$

Reduction along $S_{R_{2}}^{\prime}$ is described at long distance by SD SYM on $M^{1 / 2} \times S_{夫}^{\prime}, \times \mathbb{R}_{+}$
Reducing along S_{R}^{\prime} gives $d=4, N=4$ STM on

The defect is "defined" by The requirement that the boundary
conditions on 3 of 6 scalars are NP:

$$
x^{i} \sim \frac{\rho\left(\tau^{i}\right)}{y}+\cdots
$$

One can then argue that the induced singularity in the Hitchin system is

$$
\varphi \sim \frac{r}{z} d z+\cdots
$$

$r \in$ Neilpotent orbit : $\Theta_{p} v$
Example $y=\operatorname{su}(K) \quad \rho^{v}=p^{1}$
So $\rho=0 \Longleftrightarrow\left[1^{k}\right]$

$$
\Longleftrightarrow p^{v}=k
$$

An interesting paper of Clacaltam Dister-T Tealiberoue generalizes this sttenent to the claim that $p \rightarrow \rho^{v}$ is known in Lie group theory as the "Spaltenstein map." The defect D has a global symmetry with Lie algebra f_{D}
[UPSHOT,
The general class S theory is then
$S[\mu, C, D]$
my - Lie algebra with all roots $\alpha^{2}=2$
C-punctred Riemann surface
2) collection of defects @ punctures For suitable defects D the theories are super conformal (in FOOR dimensions) and have a mawifald af couplings (explain $\begin{aligned} & \text { er math's } \\ & \text { and }\end{aligned}$ \mathbb{C}^{*} action

$$
\left.\begin{array}{rl}
M_{g, D}= & \text { complex structures on antigens }
\end{array}\right)
$$ punctures.

Each defect contributes to global symmetry of 4D theory and

$$
\oplus_{D_{a}}^{\oplus} f_{D_{a}} \subset \underbrace{G l a b a l \operatorname{Symm}(S[l y, C, D])}_{\text {might be larger }}
$$

3. Gaiotto Gluing

Consider a weak coupling limit where the UV cure C degenerates

Describe this by a divisor DCMg,n A description of the divisor is via the Plumbing construction:

Identify $z_{1} z_{2}=q$ qa \perp coordinate to D.

There is an elegant description of the Class of theory in the limit $q \rightarrow 0$ due to D. Gaiotto: We consider Class S theories associated to C_{1} and C_{2} with an extra puncture at Z_{1} and Z_{2} with full SUCk) global symmetry so the td theory

$$
S\left[l y, C_{1}, D_{1} \cup\left\{D_{f}\left(z_{1}\right)\right\}\right] \times S\left[\ell y, C_{2}, D_{2} \cup\left\{D_{f}\left(t_{2}\right)\right\}\right]
$$

has a global symmetry

$$
s u(k) \oplus s \cup(k) \oplus \cdots
$$

Now we gauge the diagonal sulk) Ding of The first two sommands with gauge parameter

$$
q=e^{2 \pi i \tau}
$$

Claim: This is the limiting class S-theory

In this way one can reduce the theory to a pants decomposition:
$0=V M$ for Lie algebragy

= "trinion Theory" with $\mu \oplus e y \oplus y$ global symmetry
For $2 y=s u(2)$ The theory is a Collection of hypermultiplets in the

$$
2 \otimes 2 \otimes 2
$$

representation. Otherwise, some what mysterious - related to W_{N} algebras in the AGT correspondence.

Different trinion decompositions correspond to different weak coupling limits of the theory and ave related by S-duality.

The simplest case is on ald observation about the geometrical interpretation of δ-duality of $N=4 \delta \mathbb{N}$

$$
\begin{array}{r}
U(K)(2,0) / M^{1,3} \times S_{R_{1}}^{1} \times S_{R_{2}}^{1} \\
S_{R_{1}}^{\prime} / S_{R_{2}}^{\prime}
\end{array}
$$

5D SYM for $U(K)$
on $\pi^{1 / 3} \times S_{R_{2}}^{1}$
SD SMM for M (k)
$S_{R_{L}}^{\prime} \downarrow$
on $\pi M^{1,3} \times S_{R_{1}}^{1}$

$$
\psi S_{R_{1}}^{1}
$$

$4 D$ SYM for $U(K)$
$4 D$ SYM for (H)
on $\Pi^{1 / B}$ with $\tau=i \frac{R_{2}}{R_{1}}$ on MM " with $\tau=i R_{1} / R_{2}$
4. Other Defect "Operators"

The $(2,0)$ also has a class of 2-dinensional defect "operators."

In the M-Theory construction Whey are associated with semi-intinite M2-branes ending on the M5

In the class S context there are then a number of Things me can do:

We will focus on S_{z} and $L(P)$ later when describing spectral networks
5. BPS States: General Remarks

The term "BPS States" is used in plysical mathematics in many different ways.

Often it has something to do with

- solitons
- magnetic monopoles
- holomorphic curves
- Coherent sheaves and/or SPLAG's w/flat rib.
- objects in an A_{∞} category

But in physics it ultimately means a "state",
ie a positive traceclass operator ρ on a Hilbert space with $T r(p)=1$. It is always a pore state so $p=$ Rank one projector:
$\rho=|\psi\rangle\langle\psi|$ and $\psi \in \mathscr{H}$ is in an irred rep. of Poincare group, an induced rep. for $S O(d) \longrightarrow \operatorname{Poin}_{\text {in }}(1, d)$ with $m^{2}>0$

What is the relation?
Correspondence Principle

I will explain with a little digression on BPS solitons in $N=(2,2)$ field theory in $1+1$ dimensions.
$\phi: \mathbb{M}^{\mid 11} \longrightarrow \exists=\mathbb{R}$
$V(\phi)=\left(\phi^{2}-v^{2}\right)^{2}$ or more generally a potential like

$$
H=\int_{\mathbb{R}} d x\left((\forall \phi)^{2}+U(\phi)\right)<\infty
$$

induces topology on $\varphi(\mathbb{R} \rightarrow X)$ Connected components are determined by 4 boundary conditions

$$
\phi(x) \longrightarrow \text { element of }\left\{\phi_{+}, \phi_{-}\right\}
$$

Phase space $P=\frac{11}{\alpha} P_{\alpha}$ and we separately quantize the 4 connected components.
If $\alpha=\left(\phi_{-}, \phi_{+}\right)$Then the field looks like:

energy densitig for minimal energy field config. with these bet's is

\Rightarrow Soliton - behaves like a particle.

Now in free field theory there are "Coherent states" - quantum states that correspond to wall-defined classical fielal configurations for $t \rightarrow 0$.
Harmonic Oscillator $Z \in$ Phasespare $=\mathbb{R}^{2}$

$$
\psi_{z}=e^{-\frac{1}{2}|z|^{2}} e^{z a^{+}}|0\rangle
$$

compute

$$
\begin{aligned}
& \left\langle\psi_{z}\right| p(t)\left|\psi_{z}\right\rangle \\
& \left\langle\psi_{z}\right| q(t)\left|\psi_{z}\right\rangle
\end{aligned}
$$

find

just like in classical mechanics.
In weakly coupled field theory too a classical field config. $\phi_{\text {sal }}(x)$ we try to construct a state $\left|\psi_{\phi_{s a l}}\right\rangle$ so that

$$
\left\langle\psi_{\phi_{s a l}}\right| \hat{\phi}(x)\left|\psi_{\phi_{s o l}}\right\rangle=\phi_{s o l}(x)
$$

In general there can be important quantum corrections to this story - for example, even computing the exact energy of a coherent eigenstate of the Hamiltonian $\left.1 \psi_{\phi_{\text {sal }}}\right\rangle$ is in general out of ready.

However in field Theories with extended supersymmetry we can do better.
Susy $\left\{Q, Q^{+}\right\}=H$
Extended Susy $\left\{Q_{i}, Q^{+j}\right\}=\delta_{i}^{j} H$

$$
i, j=1, \ldots, N
$$

But now $\left\{Q_{i}, Q_{j}\right\} \neq 0$ is possible e.g. for $N=2 \quad\left\{Q_{1}, Q_{2}\right\}=\frac{\hat{Z}}{z}$

$$
\left[\hat{z}, H_{1}\right]=0
$$

is a consistent susy operator algebra

It turns out that in these theories,
When we quantize $P=\frac{11}{\alpha} P_{\alpha}$
the \hat{Z} operator becomes a scaler that just depends on the component α

$$
\left\{Q_{1}, Q_{2}\right\}=Z_{\infty} \cdot 1
$$

In our soliton case $\alpha=$ ordered pain of classical vacua $\phi_{ \pm}$
Move generally α is typically a Chern class or an element of a K-teeny lattice.

Write $Z_{\alpha}=e^{i \alpha}\left|Z_{\alpha}\right|$
When working out the induced rep of the super-Poincare' algebra you first quantize the Clifford algebra:

$$
\begin{aligned}
& \left\{Q_{i}, Q^{+j}\right\}=\delta_{i}^{j} M \\
& \left\{Q_{1}, Q_{2}\right\}=Z_{\alpha}
\end{aligned}
$$

Diagonalize the quadratic form.

$$
\begin{aligned}
& Q_{1}=Q_{1}-e^{i \varphi_{\alpha}} Q_{2}^{+} \\
& Q_{2}=Q_{1}+e^{-i \varphi_{\alpha}} Q_{2}^{+} \\
& \left\{Q_{1}, Q_{1}^{+}\right\}=2\left(M-\left|z_{\alpha}\right|\right) \Rightarrow M \geqslant\left|Z_{\alpha}\right| \\
& \underset{\substack{\text { (Bogon lem' } \\
\text { loud }}}{ } \\
& \left\{Q_{2}, Q_{2}^{+}\right\}=2\left(\mu+\left|Z_{\alpha}\right|\right)
\end{aligned}
$$

$M>\left|Z_{\alpha}\right| \Rightarrow$ minimal Clifford rep"- $\mathbb{C}^{\prime \prime \prime} \hat{\otimes} \mathbb{C}^{\prime \prime \prime}$
$M=\left|Z_{\alpha}\right| \Rightarrow$ minimal Clifford rep ${ }^{2} \mathbb{C}^{1 / 1}$ Unitanity $\Rightarrow Q_{1}=Q_{1}^{+}=0$ in rep n
Def: $\mathcal{L}_{\text {BPS }}=\left\{\psi|H \psi=| z_{\alpha}, \psi\right\}$
$H_{1} Z_{\alpha}$ are functions of parameters (such as $u \in B$ in the Coulomb brume)

In order to count BPS states in a stable way introduce an operator ("change")
so that

$$
\begin{aligned}
& {\left[q_{0} Q_{1,2}^{+}\right]=Q_{1,2}^{+}} \\
& \operatorname{Tr} \times q= \begin{cases}(1+x)^{2} & \text { long rep } \mathbb{C}^{\prime \prime} \hat{\otimes} \mathbb{C}^{\prime \prime \prime} \\
1+x & \text { short rep. }\end{cases} \\
& \left.\frac{d}{d x}\right|_{x=-1} \operatorname{Tr}\left(x^{q}\right)=\left\{\begin{array}{c}
0 \\
1
\end{array}\right. \\
& \frac{d}{d x} \operatorname{Tr}_{x=-1} \operatorname{Tr}_{\alpha} x^{q}=S(\alpha)
\end{aligned}
$$

/ Counts" BPS States.
6. A Zoo of Class S BPS States

In Class S with defects there are several Kinds of BPS states relevant to our story.

- Hd BPS particles
$\alpha \longrightarrow \gamma \in \Gamma_{u}=$ electromagnetic change lattice (subquotient of) $H_{1}(\Sigma, \mathbb{Z})$

$$
Z_{\alpha}=\oint_{\gamma} \lambda
$$

$S(\gamma ; u)$ piecewise constant in u satisfies KSWCF

- Hd Framed BPS States

Defined in presence of line defect $(p, 9)$ ($\zeta=$ phase used in defining the line defect et)

$$
\begin{aligned}
& \alpha \in \Gamma_{L}=\text { torsor for } \Gamma \\
& \bar{S}(\theta, s ; \cdot): \Gamma_{L} \longrightarrow \mathbb{Z}
\end{aligned}
$$

Satisties a simplar WCF (\Rightarrow KSWCF) Used in Darboux expansion of vev's

$$
\langle L(p, \rho)\rangle=\sum_{\gamma \in \Gamma_{L}} \bar{\Omega}(\gamma, \rho, \gamma) y_{\gamma}
$$

- Canonical Surface Defect Saliton Degeneracies

$$
\begin{aligned}
& C>\bar{z} \Longrightarrow B_{z} \\
& \Gamma_{i j}(z, z)=\frac{\left\{\hbar \in C_{1}(\Sigma, \mathbb{Z}) \mid \partial \Sigma=z^{(i)}-z^{(j)}\right\}}{\hbar \sim \hbar+\partial \sigma} \\
& \Gamma(z, z)=\bigcup_{i, j} \Gamma_{i j}(z, z) \Rightarrow \alpha
\end{aligned}
$$

$$
Z_{\alpha}=\oint_{\alpha} \lambda \sim
$$

Difference of critical values of superpotential

Degeneracies $\mu(\alpha)=\operatorname{Tr}_{H_{\alpha}} F(-1)^{F}$ in theory of surface defect.

- Framed Degeneracies For Interfaces
\mathbb{S}_{z} : I+1D theory whose couplings depend on Z.
Imagine varying couplings with the ID spatial variable:

$$
z_{1} \stackrel{z(x)}{\sim} z_{2}
$$

$Z(x)$ describes a path in C
At long distance we have a line detect inside the surface defect

and we have analogs of framed BPS states

$$
\begin{aligned}
& \alpha \in \Gamma\left(z_{1}, z_{2}\right)=\bigcup_{i, j^{\prime}, j^{\prime}\left(z_{1}, z_{2}\right)} \\
& \Gamma_{i j}{ }^{\prime}\left(z_{1}, z_{2}\right)= \\
& \frac{\left.\left\{\hbar \in C_{1}(\Sigma, \mathbb{Z}) \mid \partial \pi=z_{1}\right)-z_{2}^{(j)}\right\}}{\hbar \sim \pi+\partial \sigma} \\
& Z_{\alpha}=\int_{\alpha} \lambda ; \overline{\bar{\Omega}\left(p, \xi_{j} \cdot\right) \rightarrow \mathbb{Z}}
\end{aligned}
$$

7. Semiclassical Description

There are many ways to define the BPS degeneracies. One nice way applies to Lagrangian $d=4 \quad N=2$ theories.

So, these are defined by the data:
G - compact sss. Lie group
R - quaternionic representation
We need to work at infinity" in B in regions corresponding to weak coupling
(Recall $\Omega(\gamma ; u)$ is piecewise constant, jumping only on real cod. 1 walls of marginal stability.)

In these regions we have a canonical duality frame:

$$
\begin{aligned}
& \Gamma \cong \Gamma_{m g} \oplus \Gamma_{e l} \\
\Gamma_{m g} & \cong \Lambda_{\text {cochamater }}(G) \\
\Gamma_{e l} \cong & \Lambda_{\text {weight }}(G)
\end{aligned}
$$

$$
\gamma=\gamma_{m} \oplus \gamma_{l l}
$$

$\gamma_{m}=$ magnetic change, determines a magnetic mondale moduli space

$$
\begin{gathered}
M_{\text {magnon }}\left(\gamma_{m}, X_{\infty}\right)=\left\{F=* \mathbb{X} X_{\text {on }} \mathbb{R}^{3}\right\} \\
X_{\infty}=\operatorname{Re}\left(\xi_{a}^{-1}\right) \in t
\end{gathered}
$$

asymptotic Highs var.
we have to write

$$
M_{\text {mag mon }}=\mathbb{R}^{3} \times \frac{\mathbb{R} \times M_{\text {strong, cent. }}}{\mathbb{Z}}
$$

leading to a lot of technical headaches
Now R determines (via a universal construction) a hyperhalomaphic bundle $\varepsilon_{R} \rightarrow M_{\text {mag. mon. }}$

We then consider the Dirac operator
D coupled to $E_{R} \rightarrow M_{\text {mag. mon. }}$
(Actually, it is not exactly the D.O. Rather we add Clifford malt. by a hyperhalo. v.f. determined by Y IImŚaO.)

Suitably separating out the center of mass, the Hilbert space of BPS states with magnetic charge γ_{m} is just

Now $T \subset G$ has a hyper-halo action on M strong. Cent., lifts to $S \otimes \varepsilon_{R}$ and commutes with the Dirac operator The is otypical $\gamma_{e} \in \Lambda_{\omega_{+}}(G)$ space gives

$$
\mathscr{L}_{B P s}^{\gamma_{m} \oplus \gamma_{e}} \cong\left(\left.\operatorname{ter}_{L^{2}} \phi\right|_{\mu_{0}}\right)^{\gamma_{e}}
$$

This spare is also a representation of the rotation action $S U(2)$ on \mathbb{R}^{3} and

$$
S\left(\gamma_{m} \oplus \gamma_{e}\right)=\overline{T r}_{\operatorname{H}_{B P S} \gamma_{m} \oplus \gamma_{e}}(-1)^{2 J_{s}}
$$

There is a very similar description of framed BPS degeneracies $\bar{\Omega}$ using singcelar monopoles. -

See my papers with
D. Wan den Bleeken
D. Brennan
A. Royston
for more details.

